Journal of Organometallic Chemistry, 155 (1978) 123-130
© Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

CUMULATED DOUBLE BOND SYSTEMS AS LIGANDS
IX *. INSERTION OF PLATINUM(0) IN THE NS BOND OF 2,1,3-BENZOTHIADIAZOLE WITH CONCOMITANT P-C BOND RUPTURE, YIELDING A NOVEL COMPLEX
[$\overline{\left.\mathbf{P t}_{2} \mathrm{~S}\left\{\mathrm{~N}\left(6-\mu-\mathrm{N}-4,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right)\right\}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Ph}\right] \text {. CRYSTAL AND }}$
MOLECULAR STRUCTURE AND ${ }^{31} P$ NMR RESULTS

R. MEIJ, D.J. STUFKENS, K. VRIEZE *
Anorganisch Chemisch Lahoratorium, J.H. van 't Hoff Instituut, University of Amsterdam, Nieuwe Achtergracht 166, Amsterdam (The Netherlands)

A.M.F. BROUWERS and A.R. OVERBEEK

Laboratorium voor Kristallografie, J.H. van 't Hoff Instituut, University of Amsterdam, Nieuwe Achtergracht 166, Amsterdam (The Netherlands)
(Received March 8th, 1978)

Summary

Reaction of $\left[\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]$ with 5,6 -dimethyl-2,1,3-benzothiadiazole affords $\left[\mathrm{Pt}_{2} \mathrm{~S}\left\{\mathrm{~N}\left(6-\mu-\mathrm{N}-4,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right)\right\}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Ph}\right]$. A crystal structure determination shows that one of the Pt-atoms is inserted into one of the $\mathrm{N}=\mathrm{S}$ bonds. The two Pt-atoms are bridged by the amino groups produced by this insertion, and by a diphenylphosphido group which is formed by insertion of the other Pt -atom into a $\mathrm{P}-\mathrm{C}$ bond. The bond distances in the six-membered heterocyclic PtSNCC $-\mu-\mathrm{N}$ ring indicate an extensive electron delocalization. The ${ }^{31} P$-NMR spectrum reveals a large upfield shift for the bridging diphenylphosphido group, which is consistent with its presence in a four-membered ring.

Introduction

An X-ray structure determination of $2,1,3$-benzothiadiazole, $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{~S}$, indicated that there is an extended π-delocalization in the heterocyclic ring [1] (See Fig. 1). This is confirmed by photoelectron spectra and ab initio calculations, which were published recently [2]. Furthermore, it has been shown that 2,1,3benzothiadiazole may coordinate via one nitrogen to metal atoms such as $\mathbf{P t}^{\mathbf{I I}}$

[^0]

C

Fig. 1. Two possible resonance structures of 5,6 -dimethyl-2,1,3-benzothiadiazole (A and B) and the most common configuration of sulfurdiimines (C).

Fig. 2. The reaction of Pt^{0} with arylsulfurdiimines $[8], \mathrm{L}=\mathbf{P P h}_{3}$ -
[3], $\mathrm{Cr}^{\mathbf{0}}, \mathrm{Mo}^{\mathrm{o}}$ and $\mathrm{W}^{\mathbf{0}}$ [4]. Complexes have also been reported of $\mathrm{Hg}^{\mathrm{II}}, \mathrm{Ag}^{\mathrm{II}}, \mathrm{Cu}^{\mathrm{II}}$, $\mathrm{Cd}^{\text {II }}$ [5], $\mathrm{Co}^{\text {II }}, \mathrm{Ni}^{\text {II }}$ and $\mathrm{Fe}^{\text {III }}$ [6], but for these, the mode of bonding of the ligand to the metal was not discussed. Because of the close relation of this ligand to $\mathbf{R}-\mathbf{N}=\mathrm{S}=\mathbf{N}-\mathbf{R}[3,4,7]$ (see Fig. 1), of which we established the interesting rearrangement of arylsulfurdiimines with Pt° as shown in Fig. 2 [8,9,10,11], the reactivity of $2,1,3$-benzothiadiazole towards Pt° has been investigated.

In this paper we describe crystallographic and $\mathrm{NMR}\left({ }^{1} \mathrm{H}\right.$ and ${ }^{31} \mathrm{P}$) studies on $\left[\mathrm{Pt}_{2} \mathrm{~S}\left\{\mathrm{~N}\left(6-\mu-\mathrm{N}-4,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right)\right\}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Ph}\right]$.

Experimental

Preparation of $\left[\overline{P_{2} S}\left\{N\left(6-\mu-N-4,5-M e_{2} C_{6} H_{2}\right)\right\}\left(\mu-P P h_{2}\right)\left(P P h_{3}\right)_{2} P h\right]$
The reaction was carried out under dry oxygen-free nitrogen. Solvents were dried over sodium wire and distilled under nitrogen before use. [$\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$] [12] and 5,6-dimethyl-2,1,3-benzothiadiazole [13] were prepared by published methods.
$0.5 \mathrm{mmol} 5,6$-dimethyl-2,1,3-benzothiadiazole (85 mg) was added to a stirred suspension of 0.5 mmol [$\left.\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right](374 \mathrm{mg})$ in $20, \mathrm{ml}$ ether. The solution darkened slowly. After stirring for four days at ambient temperature the mixture was refluxed during 2 h . The mixture was set aside at room temperature and after three days $0.09 \mathrm{mmol}(121 \mathrm{mg})$ of black crystals were obtained. Yield 36%.

The complex is insoluble in hexane, soluble but not stabie in chloroform, and slightly soluble in benzene. Analysis: Found: C, $55.74 ; \mathrm{H}, 4.13 ; \mathrm{N}, 2.08$; S, 3.05; P, 6.74. $\mathrm{C}_{38} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{P}_{3} \mathrm{Pt}_{2} \mathrm{~S}$ calcd.: $\mathrm{C}, 55.52 ; \mathrm{H}, 3.98 ; \mathrm{N}, 2.09 ; \mathrm{S}, 2.39 ; \mathrm{P}$, 6.93%.

Spectroscopic measurements and analytical data

The ${ }^{1} \mathrm{H}$-NMR spectra were recorded on a Varian T60 A and the ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectrum was recorded on a Varian XL-100 spectrometer. Elemental analyses were carried out by the Elemental Analytical Section of the Institute for Organic Chemistry TNO, Utrecht.

Crystal data
Triclinic, cell constants $a=11.1513(6), b=12.8134(6), c=19.109(1) \AA$, $\alpha=75.601(3), \beta=88.97(1), \gamma=77.35(1)^{\circ}, Z=2$. Space group: $P \overline{1}$.

Intensity data, structure determination and refinement
4077 independent reflections (net intensity $>2.5 \sigma(\mathrm{I})$) were measured on a NONIUS CAD-4 automatic four circle diffractometer ($\mathrm{Cu}-K_{\alpha}, \theta-2 \theta$ scan). The structure was solved by locating the Pt -atoms from an E^{2}-Patterson synthesis. The next step was a difference Fourier, which revealed the three P-atoms and the S-atom. A subsequent difference Fourier gave us all the other atom positions. Refinement by block-diagonal least squares methods proceeded to a final R value of 6.4%.

The atomic coordinates are given in Table 1, the bond distances in Table 2 and the bond angles in Table 3. The positions of the carbon atoms in the phenyl rings, attached to P and Pt were refined in groups and so no standard deviations of the positions, not distances or angles for these phenyl rings are given.

Results and discussion

From the reaction of $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]$ with 5,6-dimethyl-2,1,3-benzothiadiazole black crystals were obtained, which dissolved to give a dark red colour. Analytical data, ${ }^{31} \mathrm{P}-\mathrm{NMR}$ and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra pointed to a dimeric complex, containing three phosphorous groups and one benzothiadiazole group. Single X-ray crystallography revealed that the complex must be formulated as $\left[\mathrm{Pt}_{2} \mathrm{~S}-\right.$ $\left.\left\{\mathrm{N}\left(6-\mu-\mathrm{N}-4,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right)\right\}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mathrm{PPh}_{3}\right) \mathrm{Ph}\right]$ (see Figs. 3 and 4).

The molecular structure

The molecular structure consists of a bimetallic molecule in which the

Fig. 3. The molecular structure of $\left.\left.\left[\overline{\mathrm{Pt}_{2} \mathrm{~S}\{\mathrm{~N}(6-\mu-\mathrm{N}}-4,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right)\right\}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Ph}\right]$. of the phenyl groups attached to P, only the first C-atom is drawn.

Fig. 4. A posible mechanism for the reaction between $\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{~S}$ and $\left[\mathrm{Pi}_{\mathrm{L}}\left(\mathrm{L}_{2}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right], L=\mathrm{PPh}_{3}$.
TABLE 1
ATOMIC COORDINATES (WITE STANDARD DEVIATIONS IN PARENTHESES) ${ }^{a}$

Ftionr	π	\mathbf{r}	z	Atom	x	YZ	z
Pt_{1}	$0.19858(9)$	$0.32866(8)$	0.34720\{6)	C_{21}	0.126	-0.057	0.340
Pt_{2}	$0.16212(9)$	$0.32171(8)$	$0.18554(5)$	C_{22}	0.053	-0.118	0.317
$\mathrm{P}_{\mathbf{I}}$	$0.1819(6)$	0.1600 (5)	0.1508(3)	C_{23}	0.022	-0.097	0.243
P_{2}	$0.1594(6)$	0.4684 (5)	0.2378 (3)	C_{24}	0.064	-0.015	0.193
P_{3}	0.3395(6)	$0.3805(5)$	$0.4034(3)$	C_{25}	0.241	0.578	0.207
5	$0.1806(7)$	$0.1923(6)$	0.4454(3)	C_{26}	0.305	0.590	0.144
N_{1}	$0.061(2)$	0.147 (I)	$0.438(1)$	C_{27}	0.365	0.676	0.123
N_{2}	0.084(1)	$0.285(1)$	$0.288(1)$	C_{28}	0.361	0.751	0.166
C_{55}	$0.003(2)$	$0.226(1)$	0.310 (1)	C_{29}	0.298	0.734	0.230
C_{56}	-0.015(2)	$0.168(2)$	0.383(1)	C_{30}	0.238	0.652	0.250
C_{57}	-0.110(2)	$0.109(2)$	0.399(1)	C_{31}	0.010	0.551	0.241
C_{58}	-0.104(2)	$0.111(2)$	$0.341(1)$	C_{32}	-0.029	0.582	0.304
C_{59}	-0.279(3)	0.034(3)	$0.358(2)$	Cl_{3}	-0.141	0.652	0.304
C_{60}	-0.165(2)	0.165(2)	$0.267(1)$	$\mathrm{GH3}_{3}$	-0.214	0.691	0.241
$\mathrm{C}_{\text {bi }}$	-0.245(3)	$0.157(3)$	$0.207(2)$	C_{35}	-0.175	0.661	0.178
ε_{62}	-0.083(2)	0.220(2)	0.253(1)	C_{36}	0.063	0.591	0.177
C_{1}	0.249	0.375	0.093	C_{37}	0.469	0.403	0.351
C_{2}	0.184	0.436	0.029	C_{38}	0.474	0.392	0.280
C_{3}	0.244	0.460	-0.035	C_{39}	0.575	0.407	0.240
C_{4}	0.368	0.445	-0.034	C_{40}	0.671	0.433	0.271
C_{5}	0.434	0.384	0.030	C_{41}	0.665	0.445	0.342
C_{6}	0.374	0.350	0.093	C_{42}	0.564	0.429	0.382
C_{7}	0.102	0.172	0.066	C_{43}	0.410	0.278	0.486
C_{8}	-0.003	0.254	0.048	C_{44}	0.484	0.881	0.475
C9	-0.074	0.261	-0.013	C_{45}	0.541	0.099	0.534
C_{10}	-0.039	0.187	-0.056	C_{46}	0.525	0.114	0.604
C_{11}	0.066	0.105	-0.038	C_{47}	0.451	0.210	0.615
c_{12}	0.136	0.098	0.023	C_{48}	0.393	0.293	0.556
C_{13}	0.339	0.102	0.134	C_{49}	0.278	0.502	0.435
C_{14}	0.384	0.129	0.065	C_{50}	0.174	0.503	0.474
C_{15}	0.504	0.086	0.054	C_{51}	0.122	0.560	0.500
C_{16}	0.578	0.016	0.112	C_{52}	0.174	0.688	0.486
C_{17}	0.533	-0.010	0.181	${ }^{\text {C }} 53$	0.277	0.687	0.447
ε_{18}	0.413	0.033	0.192	C_{54}	. 0.330	0.595	0.421
Cl_{19}	0.136	0.045	0.216				
C_{20}	0.167	0.025	0.289	\because			

${ }^{a}$ All carbon atoms of the phenyl groups attached to P t and P have been refined in groups; no standard deviations can be given.

TABLE 2
BOND DISTANCES IN \AA (WITH STANDARD DEVIATIONS IN PARENTHESES)

$\mathrm{Pt}_{1}-\mathrm{S}$	$2.26(1)$	$\mathrm{N}_{1}-\mathrm{C}_{56}$	$1.32(3)$	$\mathrm{P}_{3}-\mathrm{C}_{49}$	$1.81(1)$
$\mathrm{Pt}_{1}-\mathrm{P}_{2}$	$2.36(1)$	$\mathrm{N}_{2}-\mathrm{C}_{55}$	$1.32(3)$	$\mathrm{C}_{55}-\mathrm{C}_{56}$	$1.44(3)$
$\mathrm{Pt}_{1}-\mathrm{P}_{3}$	$2.26(1)$	$\mathrm{P}_{1}-\mathrm{C}_{7}$	$1.83(1)$	$\mathrm{C}_{56} \mathrm{C}_{57}$	$1.45(4)$
$\mathrm{P}_{1}-\mathrm{N}_{2}$	$2.01(3)$	$\mathrm{P}_{1}-\mathrm{C}_{13}$	$1.85(1)$	$\mathrm{C}_{57}-\mathrm{C}_{58}$	$1.40(4)$
$\mathrm{Pt}_{2} \mathrm{~N}_{2}$	$2.21(2)$	$\mathrm{P}_{1}-\mathrm{C}_{10}$	$1.83(1)$	$\mathrm{C}_{58}-\mathrm{C}_{59}$	$1.60(5)$
$\mathrm{Pt}_{2}-\mathrm{P}_{1}$	$2.29(1)$	$\mathrm{P}_{2}-\mathrm{C}_{25}$	$1.83(1)$	$\mathrm{C}_{58}-\mathrm{C}_{60}$	$1.43(4)$
$\mathrm{Pt}_{2}-\mathrm{P}_{2}$	$2.33(1)$	$\mathrm{P}_{2}-\mathrm{C}_{31}$	$1.82(1)$	$\mathrm{C}_{60}-\mathrm{C}_{61}$	$1.42(5)$
$\mathrm{Pt}_{2}-\mathrm{C}_{1}$	$2.062(8)$	$\mathrm{P}_{3}-\mathrm{C}_{37}$	$1.81(1)$	$\mathrm{C}_{60}-\mathrm{C}_{62}$	$1.28(4)$
$\mathrm{N}_{1}-\mathrm{S}$	$1.62(2)$	$\mathrm{P}_{3}-\mathrm{C}_{43}$	$1.84(1)$	$\mathrm{C}_{62}-\mathrm{C}_{55}$	$1.52(4)$

TABLE 3
BOND ANGLES (${ }^{\circ}$) (WITH STANDARD DEVIATIONS IN PARENTHESES)

$\mathrm{P}_{3}-\mathrm{Pt}_{1}-\mathrm{S}$	$92.7(3)$	$\mathrm{Pt}_{2}-\mathrm{P}_{1}-\mathrm{C}_{7}$	$115.1(3)$
$\mathrm{S}-\mathrm{Pt}_{1}-\mathrm{N}_{2}$	$91.9(6)$	$\mathrm{Pt}_{2}-\mathrm{P}_{1}-\mathrm{C}_{13}$	$111.6(4)$
$\mathrm{N}_{2}-\mathrm{Pt}_{1}-\mathrm{P}_{2}$	$73.6(6)$	$\mathrm{Pt}_{2}-\mathrm{P}_{1}-\mathrm{C}_{19}$	$116.3(4)$
$\mathrm{P}_{2}-\mathrm{Pt}_{1}-\mathrm{P}_{3}$	$102.4(3)$	$\mathrm{Pt}_{2}-\mathrm{C}_{1}-\mathrm{C}_{2}$	$120.4(4)$
$\mathrm{P}_{2}-\mathrm{Pt}_{2}-\mathrm{N}_{2}$	$72.5(7)$	$\mathrm{Pt}_{2}-\mathrm{C}_{1}-\mathrm{C}_{6}$	$120.4(4)$
$\mathrm{N}_{2}-\mathrm{Pt}_{2}-\mathrm{P}_{1}$	$102.3(7)$	$\mathrm{Pt}_{2}-\mathrm{P}_{2}-\mathrm{C}_{25}$	$126.0(4)$
$\mathrm{P}_{1}-\mathrm{P}_{2}-\mathrm{C}_{1}$	$85.9(2)$	$\mathrm{Pt}_{2}-\mathrm{P}_{2}-\mathrm{C}_{31}$	$112.8(4)$
$\mathrm{C}_{1}-\mathrm{Pt}_{2}-\mathrm{P}_{2}$	$98.9(2)$	$\mathrm{S}-\mathrm{N}_{1}-\mathrm{C}_{56}$	$130.8(7)$
$\mathrm{Pt}_{1}-\mathrm{S}-\mathrm{N}_{1}$	$111.5(8)$	$\mathrm{N}_{2}-\mathrm{C}_{55}-\mathrm{C}_{56}$	$128(3)$
$\mathrm{Pt}_{1}-\mathrm{N}_{2}-\mathrm{C}_{55}$	$129.2(7)$	$\mathrm{N}_{2}-\mathrm{C}_{55}-\mathrm{C}_{62}$	$116(2)$
$\mathrm{Pt}_{1}-\mathrm{N}_{2}-\mathrm{Pt}_{2}$	$99.1(9)$	$\mathrm{C}_{55}-\mathrm{C}_{62}-\mathrm{C}_{60}$	$122(3)$
$\mathrm{Pt}_{1}-\mathrm{P}_{2}-\mathrm{Pt}_{2}$	$84.2(3)$	$\mathrm{C}_{62}-\mathrm{C}_{60}-\mathrm{C}_{58}$	$121(3)$
$\mathrm{Pt}_{1}-\mathrm{P}_{2}-\mathrm{C}_{31}$	$107.9(3)$	$\mathrm{C}_{62}-\mathrm{C}_{60}-\mathrm{C}_{61}$	$120(3)$
$\mathrm{Pt}_{1}-\mathrm{P}_{2}-\mathrm{C}_{25}$	$125.4(4)$	$\mathrm{C}_{60}-\mathrm{C}_{58}-\mathrm{C}_{59}$	$120(3)$
$\mathrm{Pt}_{1}-\mathrm{P}_{3}-\mathrm{C}_{37}$	$115.6(4)$	$\mathrm{C}_{60}-\mathrm{C}_{58}-\mathrm{C}_{57}$	$122(3)$
$\mathrm{Pt}_{1}-\mathrm{P}_{3}-\mathrm{C}_{43}$	$114.7(3)$	$\mathrm{C}_{58}-\mathrm{C}_{57}-\mathrm{C}_{56}$	$118(3)$
$\mathrm{Pt}_{1}-\mathrm{P}_{3}-\mathrm{C}_{49}$	$111.9(4)$	$\mathrm{C}_{57}-\mathrm{C}_{56}-\mathrm{C}_{55}$	$121(3)$
$\mathrm{Pt}_{2}-\mathrm{N}_{2}-\mathrm{C}_{55}$	$130.1(7)$		

TABLE 4

Plane	Atoms defining the plane	Dihe betw (c)	angles planes	Dist to p	f atoms $(\AA)^{a}$
1	S. $\mathrm{Pt}_{1} . \mathrm{P}_{3}$	2-1	9.7	S	0.00
2	$\mathrm{N}_{2}, \mathrm{Pt}_{1}, \mathrm{P}_{2}$	3-2	53.2	N_{1}	0.00
3	$\mathrm{N}_{2}, \mathrm{Pt}_{2}, \mathrm{P}_{2}$	3-4	8.1	C_{56}	0.04
4	$\mathrm{P}_{1}, \mathrm{Pt}_{2}, \mathrm{C}_{1}$	5-6	57.1	C_{55}	-0.04
5	$S_{1} P_{1}, P_{3}, N_{2}, P_{2}$	5-7	20.0	N_{2}	0.02
6	$\mathrm{N}_{2}, \mathrm{Pt}_{2}, \mathrm{P}_{2}, \mathrm{P}_{1}, \mathrm{C}_{1}$	5-8	20.2		
7	$\mathrm{S}, \mathrm{N}_{1}, \mathrm{C}_{46}, \mathrm{C}_{55}, \mathrm{~N}_{2}$	6-7	62.1		
8	$\mathrm{C}_{55}, \mathrm{C}_{56}, \mathrm{C}_{57}, \mathrm{C}_{58}, \mathrm{C}_{60}, \mathrm{C}_{62}$	6-8	55.0		
9	$\mathrm{Pt}_{1}, \mathrm{~N}_{2}, \mathrm{C}_{55}$	$7-8$	7.3		
		9-3	29.3		

[^1]Pt-atoms are bridged by a diphenylphosphido and by an amino group. There is no direct bond between the two Pt tatoms. Pt_{1} and Pt_{2} both have an approximately square planar coordination. The dihedral angle between plane $1\left(\mathrm{~S}, \mathrm{Pt}_{1}\right.$, P_{3}) and plane $2\left(\mathrm{~N}_{2}, \mathrm{Pt}_{1}, \mathrm{P}_{2}\right)$ is 9.7°; the dihedral angle between plane $3\left(\mathrm{~N}_{2}\right.$, $\mathrm{Pt}_{2}, \mathrm{P}_{2}$) and plane $4\left(\mathrm{P}_{1}, \mathrm{Pt}_{2}, \mathrm{C}_{1}\right)$ is 3.1°. The whole molecule does not have a planar geometry because the dihedral angle between the coordination planes of $\mathrm{Pt}_{1}\left(\mathrm{~S}, \mathrm{Pt}_{1}, \mathrm{P}_{3}, \mathrm{~N}_{2}, \mathrm{P}_{2}\right)$ (plane 5) and $\mathrm{Pt}_{2}\left(\mathrm{~N}_{2}, \mathrm{Pt}_{2}, \mathrm{P}_{2}, \mathrm{P}_{1}, \mathrm{C}_{1}\right.$ (plane 6) is 57.1°. The atoms $\mathrm{S}, \mathrm{N}_{1}, \mathrm{C}_{56}, \mathrm{C}_{55}$ and N_{2} lie in one plane (see plane 7 in Table 4). The dihedral angle between this plane (7) and plane 5 is 20.0°.

The $\mathrm{N}_{1}-\mathrm{C}_{56}$ and the $\mathrm{N}_{2}-\mathrm{C}_{55}$ bond lengths are 1.32(4) \AA. This value lies between a single NC ($1.47 \AA$) and a double NC ($1.22 \AA$) bond $[8,11,14,15,16]$. In the case of the NS distance (1.62(3) \AA) the same conclusion can be drawn, since the value for a single bond is $1.74 \AA$ and that for a double bond is $1.56 \AA$ [8,14,15,17-20]. These NC and NS bond lengths are comparable to those found for the thiadiazole derivatives [1,13]. So the thiadiazole moiety in the free ligand and in the coordinated situation shows an extended π-delocalization, which may be rationalized in terms of the two resonance structures D and E in Fig. 4. In 4 E the bridging nitrogen $\left(\mathrm{N}_{2}\right)$ atom has a $s p^{2}$ hybridisation and in 4D a $s p^{3}$ hybridisation. This is consistent with the observed spatial orientation of N_{2}, which is intermediate between a trigonal and a tetrahedral configuration. The displacement of the N_{2}-atom from the plane defined by the three surrounding atoms is $0.12 \AA$. The sum of the three angles around N_{2} is 358° and the Newman projection along the $\mathrm{C}_{55}-\mathrm{N}_{2}$ bond reveals an angle of 162° between the two platinum nitrogen bonds.

The $\mathrm{Pt}-\mathrm{C}, \mathrm{Pt}-\mathrm{N}, \mathrm{Pt}-\mathrm{S}$ and $\mathrm{Pt}-\mathrm{P}$ bond lengths are consistent with values observed for other complexes [8,11,19,21-24]. The Pt-P bond lengths in the phosphido groups are longer (on average 0.07 A) than the $\mathrm{Pt}-\mathrm{P}$ distances of the Pt -phosphine bonds. This difference was also found for the $\mathrm{Pt}-\mathrm{P}$ distances in [$\mathrm{Pt}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{PPh}_{2}\right)_{2}$] [21]. The lengthening of the metal-phosphorus bond may be caused by electronic and steric effects [24].

Finally it should be noted that two C-C distances in the xylyl-ring, 152(4) and 1.28(4) \AA, deviate from the ideal $\mathrm{C}-\mathrm{C}$ distances in an aromatic ring. This may be due to an accidental error in the position of C_{62}.

Mechanism of the formation of the complex

A possible mechanism for the formation of this complex is given in Fig. 4. The first step is probably formation of a π-bonded complex (A), followed by insertion of Pt° in a $\mathrm{N}-\mathrm{S}$-bond (B and C). This type of reaction has been observed for the sulfurdiimines ($\mathrm{Ar}-\mathrm{N}=\mathrm{S}=\mathrm{N}-\mathrm{Ar}$) (see Fig. 2) $[8,9,10]$. A rearrangement of the aryl-ring, however, is not necessary in the present case because the

Fig. 5. The reaction of benzo-1,2,3-thiadiazole-1,1-dioxide with $\left[P t\left(L_{2}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right][25], L=P P h_{3}$.
aryl-ring in the benzothiadiazole is already in the cis, cis conformation. The. subsequent steps appear much more complicated, since dimerization and rupture of a $\mathrm{P}-\mathrm{C}$ bond of coordinated PPh_{3} is also observed; it is worth noting that reactions of these types occur in the formation of $\left[\mathrm{Pt}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{PPh}_{2}\right)_{2}\right]$ from [$\left.\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]$ [21]. The insertion of Pt^{0} into a cyclic NS-bond was also proposed for the reaction of benzo-1,2,3-thiadiazole-1,1-dioxide with [Pt$\left.\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right][25]$ (see Fig. 5).

${ }^{1} H$ and ${ }^{31} P-N M R$ spectra

The ${ }^{1} \mathrm{H}$-NMR spectrum shows that the two methyl groups in the xylyl-ring are inequivalent. The positions are (in $\mathrm{C}_{6} \mathrm{D}_{6}$) 1.57 and 1.03 ppm and (in CDCl_{3}) 1.78 and 1.18 ppm respectively. The proton decoupled ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectrum in $\mathrm{C}_{6} \mathrm{D}_{6}$ belongs to an $A B C X Y$ system (A and B the PPh_{3} groups, X and Y the Pt-atoms and C the PPh_{2} group). $\delta \mathrm{P}_{1}=20.1$ with ${ }^{1} J\left({ }^{195} \mathrm{Pt}-{ }^{31} \mathrm{P}\right)=2662 \mathrm{~Hz}$, $\delta \mathrm{P}_{3}=16.9$ with ${ }^{1} J\left({ }^{195} \mathrm{Pt}-{ }^{31} \mathrm{P}\right)=3161 \mathrm{~Hz}$ and $\delta \mathrm{P}_{2}=-68.6$ with ${ }^{1} J\left({ }^{195} \mathrm{Pt}-{ }^{31} \mathrm{P}\right)=$ 2016 and 2150 Hz relative to external $\mathrm{H}_{3} \mathrm{PO}_{4}$ (downfield shifts being positive). The ${ }^{31} \mathrm{P}-{ }^{31} \mathrm{P}$ coupling constants are typical for a trans and a cis coupling $\left({ }^{2} J\left(\mathrm{P}_{1}-\mathrm{P}_{2}\right)=345 \mathrm{~Hz}\right.$ and ${ }^{2} J\left(\mathrm{P}_{2}-\mathrm{P}_{3}\right)=27 \mathrm{~Hz}$ respectively). No coupling has been found between P_{1} and P_{3}. So it may be concluded that the structure both in the solid state and in solution is similar.

It is worth noting that the platinum phosphorous coupling constants for the phosphido group (P_{2}) are on average lower than those.for the phosphine groups. This is also reflected in a longer bond length of the $\mathrm{Pt}-\mathrm{PPh}_{2}$ bonds. This may be caused by the structural constraint in the bridging phosphido ligand as described by Tolman [24] for chelating phosphines. A second notable feature is the large upfield shift of about 90 ppm relative to values of coordinated phosphines. An even larger upfield shift was reported for the phosphido group in $\left[\mathrm{Pd}_{2} \mathrm{Cl}_{2}\left(\mathrm{PPh}_{2}\right)_{2}\left(\mathrm{PPh}_{2} \mathrm{H}\right)_{2}\right](\delta=-132 \mathrm{ppm})$ [26]. Recently the X-ray structure and the ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectrum of $\left.\left[\mathrm{Pd}_{3} \mathrm{Cl}\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{PEt}_{3}\right)_{3}\right]\left[\mathrm{BF}_{4}\right]$ have been published [27]. The ${ }^{31} \mathrm{P}$-NMR shift of the phosphido group in the latter compound had a very large downfield shift $(\delta=225.4$) of about 200 ppm relative to values for monodentate coordinated phosphines. The upfield shifts refer to phosphides which are situated in a four membered ring, and the downfield shift to a phosphide which is situated in a three membered ring, and so it may be concluded

Fig. 6. The ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectrum of $\left[\mathrm{Pt}_{2} \mathrm{~S}\left\{\mathrm{~N}\left(6-\mu-\mathrm{N}-4,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right)\right\}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Ph}\right]$ in $\mathrm{C}_{6} \mathrm{D}_{G}$.
that the ring size is the decisive influence on the chemical shift, and not the difference in electronic properties between a phosphine and a phosphido group. Garrou [28] proposed empirical rules which involve a downfield shift for a five membered ring and upfield shifts for four and six membered rings. It appears that this rule can also be extended to four membered rings containing two metal atoms. However, the shifts found for ring s with one metal atom appear to be lower, e.g. $\mathrm{R}_{3} \mathrm{P}$-Ir- $\mathrm{PCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}\left(\Delta\left(\mathrm{P}_{1}-\mathrm{P}_{2}\right)=40 \mathrm{ppm}\right.$ upfield for a four membered ring [29]), than for a ring as reported here with two metal atoms *. More experimental data are needed to check this hypothesis.

References

V. Luzatti, Acta Crystallogr., 4 (1951) 193.

2 M.H. Palmer and S.M.F. Kennedy. J. Mol. Struct. 43 (1978) 33.
3 J. Kuyper and K. Vrieze, J. Organometal. Chem.. 86 (1975) 127.
R. Meij, T.A.M. Kaandorp, D.J. Stufkens and K. Vrieze, J. Organometal. Chem., 128 (1977) 203.

5 R.F. Hanson and C.E. Meloan, Inorg. Nucl. Chem. Lett., 7 (1971) 461.
R.H. Hanson and C.E. Meloan, Inorg Nucl. Chem. Lett. 7 (1971) 467.

7 R. Meij. J. Kuyper, D.J. Stufkens and K. Vrieze, J. Organometal. Chem.. 110 (1976) 219.
3 R. Meij, D.J. Stufkens, K. Vrieze, E. Roosendaal and H. Schenk, J. Organometal. Chem., submitted.
R. Meij, D.J. Stuficens and K. Vrieze, J. Organometal. Chem., 144 (1978) 239.

10 R. Meij, D.J. Stufkens, K. Vrieze, J. Bode, D. Heijdennijk and H. Schenk, J. Chem. Soc. Chem. Commun.. (1977) 739.
11 J.D. Schagen, J. Bode, D. Heijdenrijk and H. Schenk, Cryst. Struct. Commun., in press.
12 F.R. Fartley; Organometal Chem: Rev. A, 6 (1970) 119.
H. Beecken, Chem. Ber., 100 (1967) 2164.
R.J: Gillespie, Molecular Geometry, Van Nostrand-Reinhold, London. 1972.

15 M. Calleri, L. Bonaccorti and D. Viterbo. Acta Crystallogr.. B. 33 (1977) 3685and references therein.
16 M. Sacerdoti, V. Bertolasi, G. Gilli, A. Dondoni and A. Battaglia, Acta Crystallogr., B33 (1977) 2816.
17 R. Meij and K. Olie, Cryst. Struct. Commun.. 4 (1975) 515:
18 A. Perales, FH. Cano and S. Garcia-Blanco, Acta Crystallogr. B33 (1977) 3172.
19 R.T.Kops, E. van Aken and. H. Schenk, Acta Crystallogr., B29.(1973) 913.
20 B.D. Sharma and J. Donohue, Acta Crystallogr., 16 (1963) 891.
21 N.J. Taylor, P.C. Chieh and A.J. Carty, J. Chem. Soc. Chem. Commun.. (1975) 448.
22. R. Mason and A.J.M. Rae, J. Chem. Soc. A, (1970) 1767.

23 I. Bleidelis, Kristallografiya, 2 (1957) 278 and 281.
24 C.A. Tolman, Chem. Rev., 77.(1977) 313.
25 C.D. Cook and G.S. Jauhal. J. Amer, Chem. Soc., 90 (1968) 1464.
26 K.R. Dixon, unpublished observations.
27 G.W. Bustuell, K.R. Dixon, P.M. Moroney, A.D. Ratray and C. Wan, J. Chem. Soc. Chem. Commun., (1977) 709.

28 P.E. Garrou, Inorg- Chem.. 14 (1975) 1435.
29 S. Hietlcamp, D.J. Stufkens and K. Vrieze, J. Organometal. Chem., 139 (1977) 189.

[^2]
[^0]: * For part VIII see ref. 8.

[^1]: ${ }^{6}$ The standard deviation is 0.03 A

[^2]: * The $\delta\left({ }^{31} P\right)$ of $P_{2} h_{2}$ in $\left[\mathrm{PA}_{3} \mathrm{Cl}_{\left.\left(P H_{2}\right)_{2}\left(P E t_{3}\right)_{3}\right]\left[B F_{4}\right][27] \text { is the first published example of a }}\right.$ phosphorus atom in a three membered ring. The enormous downfield shift can be explained by an extension of the "Garrou-rule" to three membered rings, which is in agreement with the alter nation in this series:

